Asymptotic Estimates of Hierarchical Modeling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Estimates of Hierarchical Modeling

In this paper we propose a way to analyze certain classes of dimension reduction models for elliptic problems in thin domains. We develop asymptotic expansions for the exact and model solutions, having the thickness as small parameter. The modeling error is then estimated by comparing the respective expansions, and the upper bounds obtained make clear the influence of the order of the model and...

متن کامل

Inequalities and Asymptotic Estimates

Unless specified otherwise, we use µ, σ 2 to denote the mean and variance of the the variable under consideration. This note shall be updated throughout the seminar as I find more useful inequalities. 1 Basic inequalities Theorem 1.1 (Markov's Inequality). If X is a random variable taking only non-negative values, then for any a > 0 Pr[X ≥ a] ≤ E[X] a. (1) Proof. We show this for the discrete c...

متن کامل

Asymptotic estimates of elementary probability distributions

Several new asymptotic estimates (with precise error bounds) are derived for Poisson and binomial distributions as the parameters tend to infinity. The analytic methods used are also applicable to other discrete distribution functions. AMS 1991 Mathematical Subject Classification: 60A99 33B20.

متن کامل

The Asymptotic Variance of Subspace Estimates

We give new simple general expressions for the asymptotic covariance of the estimated system parameters (A,B,C,D) in subspace identification. The formulas can be applied to a whole class of subspace methods including N4SID, MOESP, CVA etc. The asymptotic expressions highlight how the conditioning of the estimation problem influences the accuracy of the estimates. Journal of Economic Literature ...

متن کامل

Empirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models

In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical  normal  models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Models and Methods in Applied Sciences

سال: 2003

ISSN: 0218-2025,1793-6314

DOI: 10.1142/s0218202503002933